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Separation of a supersonic boundary layer (or equivalently a hypersonic boundary 
layer in a region of weak global interaction) near a compression ramp is considered 
for moderate wall temperatures. For small ramp angles, the flow in the vicinity of the 
ramp is described by the classical supersonic triple-deck structure governing a local 
viscous-inviscid interaction. The boundary layer is known to exhibit recirculating 
flow near the corner once the ramp angle exceeds a certain critical value. Here it is 
shown that above a second and larger critical ramp angle, the boundary-layer flow 
develops an instability. The instability appears to be associated with the occurrence 
of inflection points in the streamwise velocity profiles within the recirculation region 
and develops as a wave packet which remains stationary near the corner and grows 
in amplitude with time. 

1. Introduction 
Boundary-layer theory has provided a framework to investigate many aspects 

of flow at high Reynolds number, and one of the most interesting of these is 
separation. The boundary-layer equations are based on the premise that the viscous 
layer remains thin, with a thickness of O(Re-1/2) in the limit of infinite Reynolds 
number Re. This generally implies that the normal velocity at the boundary-layer 
edge is small, thereby suggesting that the influence of the boundary layer on the 
external inviscid flow is small. However, when the mainstream pressure gradient is 
adverse, the low-momentum fluid adjacent to the surface is susceptible to the onset 
of reversed flow, which may lead to boundary-layer separation and a concomitant 
significant interaction with the outer inviscid flow. 

A classical situation where viscous-inviscid interactions play a central role in the 
flow dynamics occurs when a shock wave impinges on a supersonic boundary layer. 
In several early experimental investigations (see, for example, Liepmann 1946; Ack- 
eret, Feldmann & Rott 1947 and Chapman, Kuehn & Larsen 1957), the incident 
shock wave was observed to provoke boundary-layer separation upstream of the 
point of impingement of the primary shock, with a secondary shock forming near the 
separation point. This situation constitutes an example of a compressive disturbance 
wherein the disturbance (the shock wave) induces a rise in the inviscid pressure along 
the surface. A compressive disturbance in a supersonic flow may also be caused by a 
surface that turns toward the flow. In a series of experiments, Chapman et al. (1957) 
studied a variety of situations where separation was induced by such surface geome- 
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tries (including steps and corners) and where separation occurred invariably upstream 
of the disturbance. The upstream influence observed in these examples was perplexing 
at the time since: (i) the boundary-layer equations are parabolic and, therefore, do 
not permit upstream propagation of disturbances, and (ii) the supersonic external 
flow can only transmit disturbances downstream. The first theoretical explanation for 
the propagation of disturbances upstream was given by Lighthill (1953) in the context 
of a linear theory which is valid for disturbances of small amplitude; he argued that 
a compressive disturbance gives rise to an adverse mainstream pressure gradient, and 
once the disturbance is of sufficient strength, boundary-layer separation must occur. 
As a consequence, the boundary-layer thickness can act to alter the external flow 
by provoking a pressure rise ahead of the separation point, which in turn causes 
the flow to separate farther upstream. This phenomenon is often called self-induced 
separation. 

The theoretical work of Lighthill (1953) formed the basis for the supersonic triple- 
deck theory of Stewartson & Williams (1969) and Neiland (1969) which included 
nonlinear effects and provided a theoretical explanation for the upstream influence, 
as well as for self-induced separation of a boundary layer in supersonic flow. Sub- 
sequently, triple-deck theory has been applied to many seemingly diverse problems 
throughout the subsonic, supersonic and hypersonic flow regimes. However, each 
problem contains a common feature in the form of some surface or mainstream 
disturbance, which acts to provoke a viscous-inviscid interaction in a local region 
where upstream influence is facilitated. Comprehensive descriptions of triple-deck 
problems appear in the reviews of Neiland (1974, 1981), Stewartson (1974, 1981), 
Messiter (1979, 1983), Adamson & Messiter (1980) and Smith (1982). 

The triple-deck formulation was extended to the case of hypersonic flow by Neiland 
(1970) for small, finite and large values of the viscous hypersonic interaction parameter 
and then to three-dimensional motion by Kozlova & Mikhailov (1970). Analysis of 
hypersonic boundary-layer separation on a cold wall was carried out by Neiland 
(1973) and Brown, Cheng & Lee (1990), and for a special case of hypersonic flow 
(in which the specific heat ratio approaches one) by Brown, Stewartson & Williams 
(1975). In contrast to the abrupt change in flow characteristics from subsonic to 
supersonic flow at Mach 1, the transition from supersonic to hypersonic flow is 
not as clearly defined, but instead is characterized by new physical effects which 
gradually become more important as the mainstream Mach number M ,  is increased. 
Hypersonic boundary layers generally grow much more rapidly than their supersonic 
counterparts owing to substantial viscous dissipation within the boundary layer; this 
results in significant increases in temperature that, in turn, both increase the viscosity 
coefficient and also decrease the gas density. Both effects combine to cause the 
boundary-layer thickness 6 to grow rapidly. For example, if the viscosity is assumed 
to vary linearly with temperature, then the boundary layer thickens proportionately 
to M;Re,”’, where Re, is the local Reynolds number along the surface. The rapid 
growth in 6 can provoke a global interaction with the outer inviscid flow, which is 
generally strong near the leading edge of a body, but weakens further downstream, 
provided 6 remains small in comparison to the body thickness. Further discussion 
of this global viscous interaction has been given by Anderson (1989), Mikhailov, 
Neiland & Sychev (1971) and Cheng (1993). The hypersonic triple-deck formulation 
considered here applies in regions of weak global viscous interaction, where the 
interaction is localized and due to some small-scale feature. 

It has been shown by Neiland (1973), Brown et al. (1990) and Kerimbekov, Ruban 
& Walker (1994) that in a hypersonic triple deck, a sufficient level of wall cooling 
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can significantly alter the nature of the interaction with the external flow, and such 
situations have recently been considered by Cassel, Ruban & Walker (1995). However, 
when the wall temperature is comparable to the mainstream stagnation temperature 
and the viscous interaction parameter x = M,6 4 1, the triple-deck equations for 
hypersonic flow are the same as in the classical formulation described by Stewartson 
& Williams (1969) and Neiland (1969) for supersonic flow. Numerical solutions of 
this case have been obtained in the past by Rizzetta, Burggraf & Jenson (1978), 
Ruban (1978) and Smith & Khorrami (1991) for a boundary layer encountering a 
compression ramp defined by 

x < 0, 
f (x )=  {2, x>o. 

Here, x is a scaled streamwise distance, and a is the scaled ramp angle; the actual 
physical ramp angles considered are small and O(Re-’I4). The numerical results 
of previous studies are generally all consistent for steady flow. These solutions 
exhibit a separation region anchored on the corner once the ramp angle exceeds a 
certain critical value. As the ramp angle is progressively increased, the extent of the 
recirculation region grows, and a plateau is observed to form in the predicted pressure 
distribution near the separation point. 

In most interacting boundary-layer problems there is at least one controlling 
parameter; for surface humps on the wall, this parameter is the hump height, while 
it is the shock strength for shock-induced separation and the scaled angle a for the 
compression ramp. As the controlling parameter is increased, a continual increase 
in the streamwise extent of the separation region is generally observed. Many 
investigators have attempted to consider the transition from small-scale to large-scale 
separation in high Reynolds number flows by gradually increasing the value of a. 
Such attempts have in general been unsuccessful since severe numerical difficulties are 
invariably encountered once the reverse-flow regions reach an appreciable size. Smith 
(1988) has observed that many such calculations exhibit increasing maximums in the 
pressure gradient and decreasing negative minimums in the wall shear at some point 
xo between separation and reattachment as the controlling parameter is increased. 
Smith (1988) then showed that a singularity could occur in the solution of the steady 
interactive boundary-layer equations at some finite value a = a, at x = xo. The flow 
in the immediate vicinity of the singularity is itviscid to leading order on a short 
streamwise length scale (x - xg) = O(&, where d = (a, - a)2. The maximum in the 
pressure gradient d p / d x  and minimum in the wall shear zw are singular at xo as 
a 4 ac and are of the form 

Smith & Khorrami (1991) carried out a series of calculations for steady flow past a 
compression ramp and estimated the critical value of a, to be ‘somewhat below 9’. 
The implication of the above results is that the triple-deck formulation fails for even 
moderate values of the controlling parameter and, consequently, asymptotic solutions 
for triple-deck theory cannot be constructed in the limit a + 00. In order to relieve 
the reversed-flow singularity, Smith (1988) has argued that a narrow streamwise 
region must form locally about x = xo (having a streamwise extent O(Re-5/8) for the 
triple-deck problem) ; here the inviscid Euler equations govern the motion and normal 
pressure gradient effects are conjectured to act to relieve the singularity. 
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In the present study, a further set of numerical solutions are obtained for the triple- 
deck problem for the compression ramp. The results pertain to both supersonic flow 
and hypersonic flow in regions of weak global interaction, since each problem reduces 
to the same triple-deck formulation. The present calculations differ from previous 
solutions in a number of respects. First, transformations are introduced to reduce the 
infinite streamwise domain of the lower deck to a finite domain, thereby removing any 
numerical errors associated with applying the upstream and downstream boundary 
conditions at finite values of x. Secondly, the transformations that are utilized permit 
a close packing of the mesh points in the physical space, both near the wall and in 
the corner of the compression ramp, where the recirculation region develops. The 
combination of the mesh sizes used and the finite-domain transformations make 
possible a significantly higher spatial resolution than has been possible in previous 
studies. The integrations were carried out by integrating the unsteady triple-deck 
equations through to the steady state. For coarse mesh sizes, it proved possible to 
perform the integrations smoothly and to reproduce the results of previous studies. 
However, as the mesh was progressively refined, an instability was found to occur 
for ramp angles in excess of a = 3.9, in the form of a wave packet that develops 
and remains stationary near the corner. Further refinement of the mesh produced 
essentially the same results, suggesting that this instability is physical as opposed 
to numerical. The instability appears to be associated with the development of an 
inflection point in the velocity profiles within the backflow zone. 

2. Governing equations 
Consider the flow of an ideal compressible gas past a plate of length L, which is 

oriented parallel to a uniform flow of speed U,, density p,, enthalpy h, and pressure 
p,. The specific heat ratio y for gas is assumed constant. A second semi-infinite 
plate is joined to the end of the first plate and oriented at a small angle a' to the 
flow direction to form a compression corner on the upper surface of the composite 
body. Define flow variables such that lengths, velocities, pressure, density, enthalpy 
and absolute viscosity are made dimensionless with respect to L, U,, p,Ui, p,, 
U i  and po, respectively. Here, po is the viscosity coefficient evaluated at a reference 
enthalpy of U i ;  this choice is convenient for high-speed flows and is characteristic 
of the viscosity in the boundary layer, as opposed to utilizing a viscosity based on 
the reference free-stream static temperature T, which is often relatively small. The 
viscosity is taken to be a function of temperature alone and given by the power law 

p' = (h')", (2.1) 

where n is a positive constant. Here, and throughout, the prime will be used to 
denote unscaled dimensionless variables. The Reynolds number and Mach number 
are defined by 

, M ,  = U ,  (a>-'", Reo = ___ 
Pw U,L 

PO 
(2.2a, b) 

respectively. The Reynolds number is assumed large, while the Mach number is O( 1) 
for a supersonic external flow, and M ,  + 00 in the hypersonic case. However, the 
hypersonic viscous interaction parameter 
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since the global viscous interaction is assumed to be weak and to have, therefore, a 
negligible effect on the boundary layer in the vicinity of the ramp. Note that Re0 
is defined here in terms of po rather than a viscosity coefficient pm evaluated at the 
mainstream static temperature (see, for example, Brown et al. 1990). 

Let x’ and y’ be coordinates along and normal to the surface (with origin at the 
leading edge), respectively, with (u’, 0’) denoting the corresponding velocity compo- 
nents; let p’ be dimensionless pressure and t’ be time. When the mainstream flow 
approaching the compression ramp is supersonic, the longitudinal velocity in the 
boundary layer is a function of x’ and the scaled normal variable jj = y’Re1I2, and 
with the approach to the corner is of the form 

u’ + i l j j  as x’ + 1, jj + 0. (2.4) 
Here il is a constant whose value is O(1) and is determined from the boundary-layer 
solution upstream of the corner. A triple deck develops in the corner region, and 
the lower-deck problem depends on the following scaled variables (see, for example, 
Rizzetta et al. 1978; Ruban 1978): 

- 1 = p-1/2 w P w  --1/41-5/4 fi-3/4Re,3/8X, (2 .5~)  

(2.5b) 

(2 .5~)  

(2.5d) 

(2.5e) 

(2.5J) 
Here /3 = ( M i  - 1)lI2 and 8 is O(1) for supersonic flow; in addition, the surface 
contour is defined by y = f(x), and a Prandtl transposition has been incorporated in 
equations (2.5). Values of 1, pw and pw are assumed known, with pw and pw being the 
dimensionless density and viscosity at the wall; for supersonic flow pw is O(1). The 
compression ramp angle (cf. equation (1.1)) is scaled according to 

y’ = pw -112 ,uw 114 1 -314 P-1/4Rei5/s(y - f(x)), 

u I = p, -112 pw 114 1 114 j3-1/4Re~1/su(x, y, t), 

u’ = p,1f2~/4/23/481J4Re03/8(~(~, y, t) - df /dx) 

p’ - 1 = 1 pw P e, 1/4p(~,t), 112 112 -1/2R - 

t‘ = 1- 3/2 pW --1/2 P-’/2Re;’/4t. 

(2.6) 
where a is a prescribed O(1) constant; the ramp angle a’ in the physical space is 
therefore small in the limit Re0 + 00. 

Upon substitution in the Navier-Stokes and energy equations, it is easily shown 
that p 3 pw and p = ,uw in the lower deck, while (u, u, p) satisfy 

a‘ = /21/2pi/2p1/2R eo a, 

(2 .7~)  

(2.7b) 

with boundary conditions 

u = u = 0 at y = 0, u + y +A(x,t) + ... as y + 00, (2.8) 
and 

u + y  as x+-00, 
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where A(x, t )  represents the displacement thickness of the viscous sublayer. The 
interaction law is given by the Ackeret formula 
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(2.10) 

which is obtained from analysis of the inviscid flow in the upper deck of the triple-deck 
structure. 

With increasing mainstream Mach number, the density in the boundary layer 
decreases, and as M ,  + m,p becomes O ( M z 2 )  (see, for example, Stewartson 1964). 
For a hypersonic mainstream flow, therefore, a scaled density p may be defined in 
terms of the dimensionless (with respect to p") density p', as well as a scaled normal 
coordinate j j  by 

(2.114 b )  

In the boundary layer upstream of the corner, the solution is a function of (x', j j )  and 
the longitudinal velocity u' satisfies equation (2.4) as the corner is approached, where 
again A is an 0(1) constant. Let pw denote the value of the density function defined 
by equation (2 .11~)  at the wall, with pw being the dimensionless viscosity at the wall. 
The scaled variables in the lower deck of the hypersonic triple deck may be obtained 
from equations (2.5) by replacing (pw, p, 1) by ( p w / M i ,  M,, A/M,), respectively. This 
has the net effect of replacing the factors of in equations (2.5a)-(2.6) by M Z 2 ,  MZ2,  
MZ2,  MZ2,  Moo', Mzl and 1, respectively. Upon substitution in the Navier-Stokes 
equations, it is then easily shown that p' = p w / M $ ,  and p = pw in the lower deck, 
while (u, u, p )  satisfy the generic triple-deck problem defined by equations (2.7)-(2.10). 

The basic shear flow u = y is known to be stable with respect to small-amplitude 
perturbations which are in a form consistent with equations (2.5), when both the basic 
flow and the perturbations may be described by equations (2.7)-(2.10). However as the 
motion evolves, the flow might take a form possibly containing a Rayleigh instability 
(Tutty & Cowley 1986). The occurrence of such instabilities was demonstrated 
numerically by Tutty & Cowley (1986) for an interaction law of the form p = A and 
has also been found in the first interactive stage of unsteady separation (Peridier, 
Smith & Walker 1991; Cassel, Smith & Walker 1994). Denote the exact solution of 
the triple-deck problem (2.7)-(2.10) by subscript zero and assume that infinitesimal 
harmonic disturbances are introduced of the form 

u = uo(x, y, t )  + &ei(ax-lxct)ul(x, y, t )  + ..., (2 .12~)  

av1(x,y,t) + ***, (2.12b) u = VO(X, y, t )  + Ee 
(2.12c) 

(2.124 
where E 4 1, a is real, and c = c, + ici is the complex wave speed. It is anticipated that 
a possible instability will be inviscid having short wavelengths (and therefore high 
frequencies) compared with the interaction length scales; thus the situation of interest 
corresponds to a % 1. Tutty & Cowley (1986) show that a necessary and sufficient 
condition for instability of high-frequency perturbations is the eigenvalue relation 

i(ax-act) 

P = P o b ,  0 + &e i(-aet)pl (x, t )  + ..., 
A = Ao(x, t) + &ei(ax-aet)A1(x, t )  + ..., 

I" ( U . " Y ) 2  = 0, (2.13) 

which serves to determine the complex wave speed c for a given streamwise velocity 
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profile m; in equation (2.13), the integral is across the boundary layer at fixed x. The 
flow is unstable to small disturbances if ci > 0. As discussed by Tutty & Cowley (1986), 
Rayleigh’s inflection point theorem and Fjrzrtoft’s theorem are necessary conditions for 
an instability in situations where the eigenrelation is of the form given by equation 
(2.13). Rayleigh’s theorem requires the existence of an inflection point in the velocity 
profile U O ( X ,  y ,  t),  and Fjerrtoft’s theorem states that a necessary condition for instability 
is that 

(2.14) 

somewhere in the flow field, where yip is the location of the inflection point. Both 
of these conditions are necessary, but not sufficient, for the occurrence of a high- 
frequency instability, whereas condition (2.13) is both necessary and sufficient. 

3. Formulation 
It is convenient to reformulate the triple-deck problem (2.7)-(2.10) in terms of the 

scaled shear stress z = au/ay since this permits elimination of both the pressure 
p(x, t )  from the momentum equation ( 2 . 7 ~ )  and displacement function A(x, t )  from 
the boundary condition (2.8). Differentiation of equation (2.7a) with respect to y 
eliminates p and leads to 

az a z  a7 a 2 z  

at ax ay  ay2 
- +u- + u -  = -. 

The velocity components may be written in terms of a streamfunction defined by 
u = aw/ay ,  u = -atp/ax, and z is related to w by 

J2Y 
a Y 2  - ‘3 
-- 

The boundary conditions associated with the system (3.1) and (3.2) are 

aY 
aY 

w = - = O  at y = O ,  (3.3) 

z + l  as x + + m  andas y + m .  (3.4) 
Note that the condition (3.4) is also applied as x + + co because downstream of the 
local interaction, the flow is assumed to return to its upstream form. In the present 
study, numerical solutions were obtained by integrating the system (3.1)-(3.4) forward 
in time starting from 

t = 1 at t = 0, for all x and y .  (3.5) 
Next, consider the interaction condition (2.10). The displacement function A may 

be written as 
f Y  

A(x, t )  = lim(u - y )  = lim (z - 1)dy. 
Y +m Y+’= Jo 

Upon differentiating the interaction law (2.10) with respect to x and utilizing the 
result (from equation (2.7a) that 

(3.7) 

it is easily shown that the interaction law (2.10) may be expressed solely in terms of 
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the shear stress and the known surface shape f(x), namely 
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(3.8) 

For computational purposes, it proves convenient to transform the region (-a, 0) < 
(x, y) < (co, 00) into a finite rectangular domain by the transformations 

(3 n 
2 

2 = -arctan , 9 = 
n 

(3.9a, b )  

so that the computational domain is defined in (-1,O) < ( 2 , j )  < (1 , l ) .  The parameters 
a and b determine the relative concentration of mesh points in (x,y)-space near the 
corner at x = 0 and the surface at y = 0, respectively. The transformation ( 3 . 9 ~ )  also 
eliminates the need to truncate the domain at some finite value of x upstream and 
downstream of the disturbance as has been done in previous studies (see, for example, 
Rizzetta et al. 1978; and Ruban 1978). It is easily shown that the system (3.1) and 
(3.2) transforms to 

(3.10) a z  r(2) az r(jq a z  r(jq ryjq a z  r2(j) a22 

at a ax b a? b b a? b2 ajj2’ 
-+- u7+-0-=--- +-- 

(3.11) 

where 

(3.12) 
1 r(r) = - [l + cos(7rl;)l. 
7r 

The boundary conditions are 

z +  1 as 2 + f l  and as j - ,  1, (3.13) 

(3.14) 

while the interaction law (3.8) becomes 

Note that since f(x) is a known function, the second derivative in equation (3.15) is 
conveniently left in terms of x. Finally, the velocity components are defined in terms 
of the streamfunction by 

(3.16a, b )  

4. Numerical methods 
Starting from the initial condition u = y, the solution for a given ramp angle 

was integrated forward in time until either a steady-state solution was reached or an 
instability was encountered. In this integration, a solution of the momentum equation 
(3.10) is required subject to the conditions (3.13) and the interaction law (3.15). At any 
stage, the streamfunction y($ , j ,  t )  and u(2 , j ,  t )  were obtained by integrating equation 
(3.11) for a given estimate of z subject to conditions (3.14); the solution for u($,P,t) is 
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then obtained by differentiation according to equation (3.16b). The implicit algorithm 
described below combines the momentum equation and the interaction law in such a 
manner that iteration between the boundary-layer solution and outer inviscid solution 
is not necessary at each time step. The algorithm is based on an approach due to 
Ruban (1978) and is also similar to that used by Rizzetta et al. (1978). 

Although the computational domain is finite in 9,  the streamwise velocity is of the 
form u - y as y + 00, and it is necessary, therefore, to choose a finite value of y at 
which to truncate the vertical extent of the domain. Denote this value by ymax with the 
corresponding value jmax obtained from equation (3.9b). The region (-LO) d (2,g) < 
( 1 ,  jmax) was then divided into I - 1 and J - 1 equal mesh lengths A2 and A9 in the 
2- and 9-directions, respectively. Quantities, such as z(Ei.,9, t ) ,  at the point (ki, p i )  are 
denoted by zi,j at the current time step where the solution is sought; the corresponding 
values at the previous time step where the solution is known are denoted by an asterisk, 
i.e. 2;. The following difference equation was used to approximate equation (3.10): 

for i = 2, ..., I - 1 and j = 2, ..., J - 1 .  It may be noted that the streamwise convective 
term and the normal velocity are evaluated at the previous time step as shown. In equa- 
tion (4.1) conventional central differences are used in the direction normal to the wall, 
while the streamwise convection term is approximated by a second-order-accurate (in 
A2) backward or forward difference depending on the sign of ulj as follows: 

32; - 42;-,,j + & j  

32; - 42;+Ij + 2;+2,j 

for ulj 2 0, 
2A2 

(4.2) 

-u . .  for ulj < 0. 
‘ J  2A2 

It is evident that all spatial approximations are second-order accurate, while the 
algorithm is first-order accurate in time. 

Equation (4.1) defines the tridiagonal problem for zi,j at each Qi, for i = 2, ..., I - 1 ,  
which is of the form 

(4.3) CTri,j-1 + C j z i j  + cfzi,j+l = d j ,  j = 2, ..., J - 1 ,  

where 

( 4 . 4 ~ )  

(4.4b) 

C+ = 2A - c;, (4.4c) J 

(4.4d) 

where A = r 2 ( j j ) / ( b A j ) 2 .  The solution of the difference equations (4.3) can be 



274 

expressed in the form 

where to satisfy condition (3.13) at j = J 
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7 . .  - R . 7 . .  
I,] - I tJ-1 + Q j ,  j = Z-., J, 

and for j = J - 1, ..., 2 

Rj = 

Note that these relations 

(4.5) 

RJ =O, Q j  = 1, (4.6a, b)  

(4.7a, b)  

are essentially an elimination procedure similar to the 
Thomas algorithm, with equations (4.7) constituting a recursive calculation to evaluate 
the coefficients Rj and Q, starting at the boundary-layer edge and moving toward the 
wall. The back-substitution portion of the algorithm in equation (4.5) is a recursive 
formula to evaluate the shear stress zY at the ith station starting from the wall 
and moving toward the boundary-layer edge. Note that the difference equations are 
linear and that equation (4.5) expresses zi,j in terms of the value at the mesh point 
immediately below, i.e. zi,j-1. Using these relations, the shear stress at any j j  for given 
ki may conveniently be expressed in terms of the wall shear stress z i , ~  at that station, 
and it is easily shown that 

zi,, = Ci,jzi,l + B,,,  j = 1, ..., J, (4.8) 

where 
C , J  = 1, Bi,l = 0, (4.9a, b )  

C, j  = RjCiJ-1, Bi,j = RjBy-1 + Qj, j = 2 ,..., J, ( 4 . 1 0 ~ ~  b )  
where Rj and Qj are defined by equations (4.7). It is evident that the solution to 
the momentum equation for z y  is known throughout the domain once the wall shear 
stress zi,lis found. 

In order to determine the wall shear stress, consider the interaction law (3.15). The 
integral in equation (3.15) may be approximated using the trapezoidal rule to give 

Substitution of equation (4.8) into equation (4.11) gives an expression for the integral 
which again is in terms of the wall shear, namely 

where 

(4.12) 

(4.13~) 

(4.13b) 

Similarly, approximating &/a$ at 9 = 0 in equation (3.15) by a second-order-accurate 
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forward difference and utilizing equations (4.8) and (4.9) yields 

(4.14) 

Finally, substitution of equations (4.13) and (4.14) into (3.15), along with standard 
second-order central difference approximations for the derivatives of ziql with respect 

4ci,2 - 3 - ci,3 4Bi,2 - 4 3  El = 2A9 Zi,l + 2Ag * @ i=o 

to 2, yields the following tridiagonal system for the wall shear stress: 
-+  

zi-Ti-1,1 + EiZi,l + ci ~ i + l , l  = 2, i = 2, ..., I - 1, 

where 

, 

(4.15) 

(4.16a) 

(4.16b) 

(4.16~) 

(4.16d) 

The tridiagonal system (4.15) was solved for the wall shear zi,l using the Thomas 
algorithm subject to conditions (3.13) which give 

Z1,l = ZI,1 = 1. (4.17) 
The shear stress throughout the domain was then computed from equation (4.8) for 
i = 2, ..., I - 1 ; note that at the streamwise boundaries z1.j = Z I , ~  = 1, j = 2, ..., J .  

To calculate the velocity components at each time step, equation (3.16a) was first 
integrated to obtain the streamfunction throughout the domain according to the two 
integrations 

(4.18a, b) 

which were carried out using the trapezoidal rule starting from ui,l = wi,l = 0. The 
velocity v was then obtained using a second-order central difference in equation 
(3.16b). 

A direct determination of the pressure distribution is not necessary for continuation 
of the present unsteady calculation; however, the pressure is of physical interest and 
may be computed at any desired time from the shear stress at the wall as follows. 
Substitution of equation (3.6) with equation (3.9a) into the interaction law (2.10) gives 

Substitution of equation (4.12) for the integral yields 

(4.19) 
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(4.21) 

which for the compression ramp become p1 = 0, p~ = a, where a is the scaled ramp 
angle. 

Stability of the above numerical algorithm requires that the Courant-Friedrichs- 
Lewy criterion, modified owing to the finite-domain transformations (3.9), be satisfied; 
this condition is At < aAEc/(2 lrulmax) where JTuJ,,,denotes the maximum value of 
Ir(2)ul. From the definition (3.12) of r ,  the maximum value of r is 2/x which 
occurs when Ec = 0; therefore, the stability criterion may be written as 

xaAEc 
At < ~ 

4 I Umax I ' 
(4.22) 

Since u - y + A  as y -+ co, the maximum streamwise velocity is achieved in the 
computational domain at ymax where the domain is truncated. The stability condition 
(4.22) evidently restricts the time step for a given choice of the streamwise mesh size 
A2. In the present calculations, the time step was restricted to values at least one-half 
of that indicated by the criterion (4.22) to ensure stability of the numerical algorithm. 

5. Calculated results 
As shown in equation (4.16d), the surface shape f ( x )  enters the numerical algorithm 

as a second derivative with respect to x, and when the slope of f(x) is discontinuous 
(as in equation (Ll)), the second derivative of f(x) contains a delta function, thereby 
necessitating special treatment at the corner (see Rizzetta et al. 1978; and Brown et al. 
1990). In order to keep the present algorithm general for various surface shapes f(x), 
the corner was rounded slightly so that d2f/dx2 is a smooth function everywhere. In 
the present study, the surface shape was defined by 

f(x) = ;a [x + (x2 + r2)1/2] , 

instead of equation (Ll), where c( is the scaled downstream ramp angle. Here, r 
is called the rounding parameter, and as r + 0 the surface collapses to the sharp 
compression ramp. All subsequent results shown are for r = 0.5, although calculations 
were also carried out for other values. This particular value was found to eliminate 
numerical difficulties associated with the corner while at the same time minimizing 
the effect on the overall results. In general, the value of r has a significant influence 
on the ramp angle a at which separation first occurs; however, once separation occurs 
the flow development is essentially similar for all small values of r.  

As discussed in $4, a finite value of ymax must be chosen at which to terminate 
the vertical extent of the computational domain. Numerical experimentation revealed 
that the solution was rather insensitive to the value of ymax. For example, for a scaled 
ramp angle of a = 2.5, there was no noticeable change in solutions having ymax 2 10. 
However, due to the transformation (3.9b) used for the y-coordinate, there is little 
advantage in minimizing ymax as was necessary in previous studies (see, for example, 
Rizzetta et al. 1978). Therefore, y,,, = 50 was used throughout, and the transformed 
?-coordinate was discretized by defining a uniform mesh over the range 0 5 9 < Pmax, 

where 9max is related to ymax by equation (3.9b). Note, however, that the choice of ymax 

does affect the maximum time step which may be used as specified by the numerical 
stability criterion (4.22). 
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FIGURE 1. Numerical solutions for various small ramp angles a and a = b = 5.0: I = 101, J = 51 
for tl = 1.0, 1.5; I = 201, J = 101 for tl = 2.0, 2.5, 3.0, 3.5. (a) Pressure, ( b )  wall shear stress. 

Here, steady-state solutions for various parameters were sought as the large- 
time limit of unsteady calculations. The initial condition was taken to be u = y 
corresponding to a flat plate (a = 0), and at t = 0 the ramp angle was impulsively 
adjusted to its final value. The computation was marched forward in time until a 
steady state was reached. The unsteady numerical calculation was terminated at 
some large time at which &/at (computed using a first-order backward difference) 
decreased below a given tolerance value at each mesh point along the wall; the 
tolerance was less than 5 x in all cases. This tolerance was achieved for a = 3.5 
at approximately t = 180, for example, and at earlier times for smaller a. 

Calculated pressure and wall shear distributions for a range of small ramp angles 
are shown in figures l (a)  and l(b),  respectively. Calculations were carried out for a 
number of mesh sizes, and the results shown are believed to be grid independent. In 
this and subsequent figures, the smallest mesh sizes used are shown in the captions 
along with the stretching factors a and b in the transformations (3.9); note that 
smaller values of a and b mean that in physical space progressively more mesh points 
are packed near the corner and wall, respectively. The pressure approaches zero as 
x -+ -co and tends smoothly to the reduced ramp angle c( as x + co. Likewise, 
the scaled wall shear tends to unity as 1x1 + co. Reversed flow occurs adjacent 
to the surface when the wall shear becomes negative, and Rizzetta et al. (1978) 
estimated that this first occurs for a = 1.57. In the present geometry, where the 
corner is rounded, separation first occurs at a slightly higher ramp angle of a = 1.9 
(to two significant figures). As the ramp angle is increased, the recirculating-flow 
region grows in extent as shown in figure 2, where the streamlines for several cases 
involving separation (a  = 2.0,2.5,3.0,3.5) are shown; in addition, a constant-pressure 
plateau forms in the pressure distribution in the centre of the recirculation zone. The 
separation point moves progressively upstream with increasing a, while the point of 
reattachment moves increasingly downstream. Burggraf (1975) has given an estimate 
of the length of the separated-flow region based on a theory valid for large a. It may 
be noted that the movement of the reattachment point appears exaggerated in figure 
2 because the stretched variable y + f(x) is used; the actual streamwise extent of the 
separation zone is more accurately reflected in figure l(b).  

The present results for small ramp angles are in good agreement with results 
obtained in previous investigations and compare well with the results of Rizzetta et 
al. (1978) for a < 2.5. For larger ramp angles, however, the present results exhibit a 
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FIGURE 2. Streamlines for small ramp angles for 1 = 201, J = 101 and a = b = 5.0. 
( a )  tl = 2, (b )  tl = 2.5, (c) tl = 3, ( d )  tl = 3.5. 

reversed-flow region with smaller streamwise and normal extent than that observed 
by Rizzetta et al. (1978), and are in closer agreement with the calculations of Ruban 
(1978) for a = 3.0 and Smith & Khorrami (1991) for a = 3.5. It should be noted 
that for even the coarsest mesh used in the present study with I = 101 and J = 51, 
the mesh sizes near the corner are at least half the size of those used in all previous 
studies. Rizzetta et al. (1978) also showed that the triple-deck solutions agree well 
with the experimental results of Lewis, Kubota & Lees (1968), and that they provide 
the limiting case for finite Reynolds number interacting-boundary-layer theory (see 
also Burggraf et al. 1979). 

For cases involving separation, the rise in pressure and the drop in wall shear 
from the corresponding upstream values each have invariant shape as the ramp 
angle is increased, when plotted with origin at the separation point where z, = 0. 
This corresponds to the free interaction considered experimentally by Chapman 
et al. (1957) and theoretically by Stewartson & Williams (1969). Increasing the 
strength of the disturbance (in this case the angle of the compression ramp) beyond 
a certain level does not change the flow approaching the reversed-flow region except 
to shift the separation point upstream. This was clearly illustrated in the numerical 
solutions obtained by Ruban (1978) who plotted the results for several cases involving 
separation with origin at the separation point. 

The steady solutions obtained by Smith & Khorrami (1991) for larger ramp 
angles (a  2 3.5) show a continuation of the trends observed at lower ramp angles. 
As observed in figure l(b), the minimum in wall shear drops below zero with 
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increasing ramp angle, and eventually the wall shear at the corner (x = 0) begins 
to rise as the ramp angle is increased above a = 3.0 in apparent anticipation of an 
eventual secondary separation at the corner. Indeed, the numerical results of Smith 
& Khorrami (1991) actually show secondary separation (7, > 0) at the corner for 
a > 4.5, with a corresponding drop in pressure just downstream of the pressure 
plateau, prior to a subsequent rise to the downstream ramp pressure. As the ramp 
angle is increased further, their results show that a pronounced decrease in the wall 
shear minimum and increase in the pressure gradient maximum occur just upstream 
of the reattachment point. Smith & Khorrami (1991) showed that for steady flow, 
the wall shear and pressure gradient become singular at some large a in a manner 
previously determined by Smith (1988). 

The present results, however, suggest that for large ramp angles the unsteady flow 
experiences an absolute instability in the form of a wave packet but at ramp angles 
well below the larger angles considered by Smith & Khorrami (1991). As discussed in 
$2, satisfaction of the Rayleigh and Fjsrtoft criteria are necessary conditions for the 
occurrence of a high-frequency instability. Both criteria are satisfied when a velocity 
profile develops an inflection point such that the curvature of the velocity profile 
a2u/ay2 is negative below the inflection point and positive above it. In the present 
calculations, it was found that the flow field is free of inflectional streamwise velocity 
profiles for a c 3.9 (to two significant figures) but that inflection points first form 
for tl = 3.9 near the surface and immediately downstream of the corner. The critical 
value of a = 3.9 was determined by evaluating a2u/ay2, using a second-order central 
difference, from the steady solutions for various ramp angles. As the ramp angle 
is increased (at least up to a = 5.0), the inflection point was found to move away 
from the surface, and there is an expanding streamwise range near E;. = 0 over which 
streamwise inflectional profiles appear. 

Because the presence of an instability was suspected for a 2 3.9, a series of 
calculations was carried out, and it was found that for sufficiently refined spatial grids, 
the numerical solutions did indeed become unstable for a > 3.9 at the streamwise 
location where the velocity profiles were inflectional. Streamwise velocity profiles are 
shown at the corner (x = 0) for three different ramp angles (a = 3.5,3.9 and 4.5) in 
figure 3. Here, coarse meshes ( I  = 101,J = 51) were used for a = 3.9 and 4.5 in 
order to suppress the instability. The velocity profile for a = 3.5 shows that reversed 
flow can occur in the corner of the compression ramp without the appearance of 
inflection points. This is in contrast to the hump geometries considered by Kazakov 
(1985), Duck (1985) and Tutty & Cowley (1986), for which triple-deck solutions were 
found (using various interaction conditions) describing the flow over smooth humps 
of various heights where separation occurs on the downstream side of the hump 
for sufficiently large hump heights ; however, in such cases, inflection points were 
found to appear in the streamwise velocity profiles for hump heights smaller than 
that necessary for reversed flow. It may be noted from figure 3 that as the ramp 
angle is increased, the magnitude of the reversed-flow velocity adjacent to the surface 
first decreases, and the lower portion of the velocity profile straightens out prior to 
formation of an inflection point. For tl = 3.9 the inflection point near y = 0 (from 
evaluation of d2u/ay2)  is not detectable graphically, while for a = 4.5, the inflection 
point has moved away from the surface and is clearly visible. 

In order to further confirm the existence of a physical instability, attempts were 
made to compute the eigenrelation (2.13) using the algorithm given by Tutty & 
Cowley (1986) (see also Cassel et al. 1995). It proved difficult, however, to find O( 1)  
values of the complex wave speed c which were clearly unstable for the ramp angles 
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FIGURE 3. Streamwise velocity profiles at x = 0 for CI = 3.5 (-), 
CI = 3.9 (--------) and = 4.5 (. . . . . . .). 

considered. In order to test the algorithm used for evaluating the integral in (2.13), 
the flow over the hump considered by Tutty & Cowley (1986) was recomputed for 
the surface geometry defined by f ( x )  = he-10x2, but using the supersonic interaction 
condition p = -dA/Bx rather than the interaction condition A = 0 used by Tutty & 
Cowley (1986). Results for Re(c) and Im(c) for a hump of height h = 2 were given by 
Tutty & Cowley (1986) (see their figure 2a), where c was found using a secant method 
and from evaluation of the instability criterion (2.13) for velocity profiles over a range 
of x; for this situation both Re(c) and Im(c) are 0(1), and essentially similar results 
were reproduced using the present codes that incorporate the supersonic Ackeret 
formula. However, for smaller hump heights close to the critical value at which 
Tutty & Cowley (1986) first found the flow to become unstable, it proved difficult 
to precisely determine c. In such cases, Im(c) is small and the streamwise range of 
unstable profiles is much shorter. Therefore, it is believed that for the compression 
ramp, Im(c), and thus the growth rate, is small for the ramp angles considered and 
is therefore difficult to determine from integration of equation (2.13). A contributing 
factor to the problems encountered in determining the eigenvalues of equation (2.13) 
may also be associated with the difference in the normal location of the inflection 
point in velocity profiles from the compression ramp and hump geometries; the 
inflection point is closer to the wall in the compression ramp case. 

The observed instability for CI 2 3.9 is manifest in the form of a wave packet which 
develops in the unsteady solution and remains stationary near the corner. A typical 
example is shown in figures 4 and 5,  where a and b have been increased to 10.0 in order 
to ensure that the time step is sufficiently small to avoid instability of the numerical 
algorithm according to equation (4.22). Figure 4 shows the pressure and wall shear 
distributions after the instability has developed for a case with CI = 4.0, and figure 5 
shows the temporal development of the wave packet for the same case. For CI 2 3.9 
the general form of the wave packet and its streamwise location remain the same, 
and the results shown are representative of those for all other ramp angles. The effect 
of mesh size on the instability is similar to that observed by Tutty & Cowley (1986) 
and Cassel et al. (1993, in that sufficient resolution is required in order to reveal the 
instability in the numerical calculations. This is presumably why the instability has not 
been observed in previous investigations of unsteady flow over compression ramps. 
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Even in the present study, where the transformations (3.9) were used to concentrate 
grid points near the corner, no instability was observed in the numerical solutions 
for 3.9 < a < 5.0 when I = 101 and J = 51 were used. In these cases, the present 
results reached an apparent steady state and were in good agreement with those 
of Smith & Khorrami (1991). As the mesh was reduced, smaller-wavelength faster- 
growing unstable modes were admitted, and the small numerical errors introduced 
in the calculation were magnified causing the instability to form. For even finer 
meshes, the instability occurred at earlier times and evolved more rapidly owing to 
the faster growth rates. For example, the case shown in figures 4 and 5 computed 
with I = 301 and J = 151 revealed an instability at approximately t = 85, while the 
same case computed with I = 201 and J = 101 became unstable at about t = 128. 
The oscillations in figures 4 and 5 are basically point to point in the numerical mesh, 
and finer meshes produce smaller-scale oscillations. In addition, reductions in time 
step were found to delay, but not eliminate, the onset of the instability. Although 
changes in the spatial mesh and time step alter the time at which the instability forms, 
the streamwise extent and shape of the envelope surrounding the wave packet was 
found to be unaltered. In general, smaller spatial mesh sizes result in higher-frequency 
oscillations which are contained within an envelope of essentially the same shape. 

6.  Discussion 
It has been shown that the supersonic flow or hypersonic flow (in regions of weak 

global interaction) over compression ramps on the triple-deck scales is unstable in the 
form of stationary wave packets that develop for ramp angles above a critical value. 
It follows from a linear stability analysis that Rayleigh’s and Fjmtoft’s criteria are 
necessary conditions for instability associated with high-frequency disturbances. These 
criteria require the formation of an inflection point in a velocity profile such that the 
curvature is negative below the inflection point and positive above it. In addition, a 
stability condition is known which provides a necessary and sufficient criterion for the 
occurrence of high-frequency instabilities, but the eigenvalue relation proved difficult 
to accurately evaluate numerically for the flow over the compression ramp. 

The results for small ramp angles (a  < 3.5) were in good agreement with previous 
studies which show that separation occurs in the corner once a critical ramp angle is 
exceeded. As the ramp angle is increased, the streamwise and normal extent of the 
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FIGURE 5. Temporal development of wave packet in pressure p and wall stress z, 
(same case as in figure 4). 

recirculating-flow region grows substantially, and the pressure distribution develops a 
pressure plateau. As the ramp angle is increased further, it was found in the present 
study that a high-frequency absolute instability develops in the numerical solution in 
the form of a wave packet which remains stationary near the corner. This was found 
to occur for a 2 3.9 when sufficiently refined grids were used. The instability has high 
frequencies and short wavelengths, and for this reason it is highly mesh dependent. As 
the mesh is reduced, smaller-wavelength faster-growing modes were manifest in the 
calculation, and the instability appeared earlier in the unsteady calculation and grew 
more rapidly. While the specific form of the instability and the time at which it appears 
is highly mesh dependent, the bounding envelope of the wave packet maintained the 
same shape and streamwise extent regardless of the mesh used. In addition, the form 
of the wave packet remains largely the same for all ramp angles considered in which 
the flow became unstable. The existence of the instability in the numerical calculations 
is consistent with Rayleigh’s and Fjmtoft’s criteria. For a < 3.8, the flow was found 
to contain no inflection points in the streamwise velocity profiles, and the numerical 
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solutions remained stable and proceeded smoothly to a steady state for all mesh sizes 
considered. Inflectional profiles which satisfied Fjarrtoft’s criterion were found for 
ct 2 3.9, and it was these for cases that the numerical solution became unstable. 

While similar instabilities have been observed in previous studies of triple-deck 
flows, this appears to be the first case in which the instability is exhibited in the 
form of a stationary wave packet and thereby constitutes an absolute instability. The 
flow over a hump on the triple-deck scales is also known to be unstable (Kazakov 
1985; Tutty & Cowley 1986), wherein a wave packet forms downstream of a hump 
of sufficient height. However, the wave packet for the hump is convected downstream 
after formation and therefore is referred to as a convective instability (Drazin & Reid 
1981). The instability in that case was hypothesized by Tutty & Cowley (1986) to be 
responsible for the periodic eddy splitting observed downstream of the hump. One 
qualitative difference between the flow over a hump and the flow over a compression 
ramp is the normal location of the inflection point in the velocity profiles. The 
inflection point forms away from the surface in the flow over a hump, while for 
the compression ramp, the inflection point first forms near the surface. In addition, 
whereas the inflection point is always located within the reversed-flow region in 
the case of a compression ramp (see figure 4), it is always located in a region of 
positive velocity in the case of a hump. The evolution of an instability for flow 
over an unsteady hump, again on triple-deck scales, has also been considered by 
Duck (1985) and Tutty & Cowley (1986). In both studies the generation of wave 
packet type instabilities convecting downstream from the hump was attributed to a 
high-frequency instability. 

The generation and evolution of convective wave packets has been considered in 
several studies. Gaster & Grant (1975) studied experimentally the evolution of three- 
dimensional wave packets generated by an acoustic pulse within the boundary layer 
on a flat plate. It was shown that the three-dimensional wave packet initially grows 
in amplitude and expands with a smooth envelope. But as it convects downstream, 
nonlinear effects distort and alter the smooth peaks. This was also demonstrated 
in the theoretical study by Ryzhov (1990). This last study, as well as the work of 
Ruban (1990), considered the evolution of wave packets in the framework of triple- 
deck theory. Additional studies (see, for example, Gaster 1982; Ryzhov & Terent’ev 
1986; Terent’ev 1987; Jiang 1991 and the references therein) have sought to develop 
theoretical models which describe the evolution of wave packets during their linear 
stage of development. Whereas classical stability theory only considers the stability of 
particular modes, these theoretical models take into account modes having a broad 
range of frequencies which describe the formation of wave packets. It is believed that 
wave packets are a precursor to the formation of turbulent spots in the transition 
process from laminar to turbulent flow. 
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